5-DOT LED LINEAR LEVEL METER DRIVER

The KA2287 are a monolithic integrated circuit designed for 5-dot LED level meter drivers with a built-in rectifying a amplifier, it is suitable for AC/DC level meters such as VU meters or signal meters.

FEATURES

- High gain rectifying amplifier included (Gy = 26dB).
- · Low radiation noise when LED turns on.
- Linear indicator for 5-dot LED of bar type.
- (0.33, 0.67, 1, 1.33, 1.67) • Constant current output.
- KA2287: I_o = 15mA Typ. Wide operating supply voltage range: V_{cc} = 3.5V ~ 16V
- Minimum number of external parts required.

ORDERING INFORMATION

Device	Package	Operating Temperature	l _D
	7 9 SIP - 20°C~ + 80°C	7 mA	
KA2287			15 mA

BLOCK DIAGRAM

3

ABSOLUTE MAXIMUM RATINGS (T_a = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	18	v
Amp Input Voltage	V _{1 (8-5)}	$-0.5 \sim V_{\rm CC}$	V
Pin 7 Voltage	V ₇₋₅	6	v
D Terminal Output Voltage	VD	18	V
Circuit Current	lcc	12	mA
D Terminal Output Current	ID	20	mA
Power Dissipation	Pp	1100	mW
Operating Temperature	TOPR	- 20 ~ + 80	°C
Storage Temperature	T _{STG}	-40 ~ +125	°C

-11mW/°C is decreased at higher temperature than $T_a = 25^{\circ}C$.

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{CC} = 6V, f = 1KHz, unless otherwise specified)

Characteristic		Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Curre	nt	lcca	V _I = 0V	_	6	8.5	mA
D Output Current		lo	V _i = 0.15V	11	15	18.5	mA
Input Bias Current		IBIAS		-1		0	μA
Amp Gain		Gv	V ₁ = 0.1V	24	26	28	dB
		V _{CL(ON)1}		0.28	0.33	0.40	
		V _{CL(ON)2}		0.59	0.67	0.75]
Comparator On Level	V _{CL (ON)}	V _{CL(ON)3}			1		
		V _{CL(ON)4}		1.25	1.33	1.42	1
		V _{CL(ON)5}		1.48	1.67	1.87	

* Definition of 1; Pin 3 voltage when V_{CL (ON) 3} turn on. (65mV)

TEST CIRCUIT

The recommended value of R at T_a (max)=60°C.

V _{cc} (V)	8~12	10 ~ 14	12~16
R (Ω)	47	68	91

By changing the time constant C_1 and C_2 , the response, attack and release time, may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.

